A New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate

نویسندگان

  • Ali Nedaie Faculty of Industrial Engineering, K.N.Toosi University of Technology
چکیده مقاله:

Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which considers different error rates for misclassification. The cost-sensitive scheme is useful when misclassifications cannot be considered equal. For example, it is true for medical diagnosis. In such cases, misclassifying a patient as healthy implies more loss in comparison to the opposite loss. Therefore, cost-sensitive scheme poses as a modified model and hereby aims at minimizing loss function instead of generalization error. This paper, concentrates on a new formulation cost-sensitive classification considering both misclassification cost and accuracy measures. Also, in the training phase a new heuristic algorithm will be used to solve the proposed model. The superiority of the novel method is affirmed after comparing to the traditional ones.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost-Sensitive Semi-Supervised Support Vector Machine

In this paper, we study cost-sensitive semi-supervised learning where many of the training examples are unlabeled and different misclassification errors are associated with unequal costs. This scenario occurs in many real-world applications. For example, in some disease diagnosis, the cost of erroneously diagnosing a patient as healthy is much higher than that of diagnosing a healthy person as ...

متن کامل

Robust Cost Sensitive Support Vector Machine

In this paper we consider robust classifications and show equivalence between the regularized classifications. In general, robust classifications are used to create a classifier robust to data by taking into account the uncertainty of the data. Our result shows that regularized classifications inherit robustness and provide reason on why some regularized classifications tend to be robust agains...

متن کامل

A Neural Network Model Based on Support Vector Machine for Conceptual Cost Estimation in Construction Projects

Estimation of the conceptual costs in construction projects can be regarded as an important issue in feasibility studies. This estimation has a major impact on the success of construction projects. Indeed, this estimation supports the required information that can be employed in cost management and budgeting of these projects. The purpose of this paper is to introduce an intelligent model to im...

متن کامل

Cost-Sensitive Support Vector Machines

A new procedure for learning cost-sensitive SVM(CS-SVM) classifiers is proposed. The SVM hinge loss is extended to the cost sensitive setting, and the CS-SVM is derived as the minimizer of the associated risk. The extension of the hinge loss draws on recent connections between risk minimization and probability elicitation. These connections are generalized to cost-sensitive classification, in a...

متن کامل

a neural network model based on support vector machine for conceptual cost estimation in construction projects

estimation of the conceptual costs in construction projects can be regarded as an important issue in feasibility studies. this estimation has a major impact on the success of construction projects. indeed, this estimation supports the required information that can be employed in cost management and budgeting of these projects. the purpose of this paper is to introduce an intelligent model to im...

متن کامل

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 11  شماره 2

صفحات  21- 30

تاریخ انتشار 2018-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023